Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Signal Transduct Target Ther ; 6(1): 266, 2021 07 12.
Article in English | MEDLINE | ID: covidwho-1307323

ABSTRACT

Coronavirus disease 2019 (COVID-19) is regarded as an endothelial disease (endothelialitis) with its patho-mechanism being incompletely understood. Emerging evidence has demonstrated that endothelial dysfunction precipitates COVID-19 and its accompanying multi-organ injuries. Thus, pharmacotherapies targeting endothelial dysfunction have potential to ameliorate COVID-19 and its cardiovascular complications. The objective of the present study is to evaluate whether kruppel-like factor 2 (KLF2), a master regulator of vascular homeostasis, represents a therapeutic target for COVID-19-induced endothelial dysfunction. Here, we demonstrate that the expression of KLF2 was reduced and monocyte adhesion was increased in endothelial cells treated with COVID-19 patient serum due to elevated levels of pro-adhesive molecules, ICAM1 and VCAM1. IL-1ß and TNF-α, two cytokines elevated in cytokine release syndrome in COVID-19 patients, decreased KLF2 gene expression. Pharmacologic (atorvastatin and tannic acid) and genetic (adenoviral overexpression) approaches to augment KLF2 levels attenuated COVID-19-serum-induced increase in endothelial inflammation and monocyte adhesion. Next-generation RNA-sequencing data showed that atorvastatin treatment leads to a cardiovascular protective transcriptome associated with improved endothelial function (vasodilation, anti-inflammation, antioxidant status, anti-thrombosis/-coagulation, anti-fibrosis, and reduced angiogenesis). Finally, knockdown of KLF2 partially reversed the ameliorative effect of atorvastatin on COVID-19-serum-induced endothelial inflammation and monocyte adhesion. Collectively, the present study implicates loss of KLF2 as an important molecular event in the development of COVID-19-induced vascular disease and suggests that efforts to augment KLF2 levels may be therapeutically beneficial.


Subject(s)
COVID-19 , Human Umbilical Vein Endothelial Cells , Kruppel-Like Transcription Factors/biosynthesis , SARS-CoV-2 , COVID-19/genetics , COVID-19/metabolism , COVID-19/pathology , COVID-19/prevention & control , Cytokines/biosynthesis , Cytokines/genetics , Gene Expression Regulation , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Human Umbilical Vein Endothelial Cells/virology , Humans , Intercellular Adhesion Molecule-1/biosynthesis , Intercellular Adhesion Molecule-1/genetics , Kruppel-Like Transcription Factors/genetics , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Vascular Cell Adhesion Molecule-1/biosynthesis , Vascular Cell Adhesion Molecule-1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL